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ABSTRACT: Let G be a graph and f:V - {1,2,....k

}be a proper k-coloring of G. We say that f is a » -coloring if N(X_) nx.
r i J

contains at least r-elements fori #j. If k is the largest number such that G admits a br—coloring, then k is called the br—

chromatic number of G, denoted by br(G).

In this paper we introduce the concepts » -chromatic number of graphs, worm graph, and dream catcher graph, Also, we give
:
their » -chromatic number. In addition, we present some applications of these notions to sociology.
Keywords: b -chromatic number; worm graph; dream catcher graph; social networks; intergroup relations
r

1. INTRODUCTION

Definition 1. A vertex coloring of a graph G =(V,E) is a
function f:v — C from the set of vertices to a finite set C
whose elements are called colors.

Example 1. Consider graph G in Figure 1. Then
J V= iL23) given by fla)=f () =1, 1 (c)=f (d)=2

and f (e)=f ()= f(n)= 3 is a vertex coIorlng of
G. Similarly, the functlon 1, V—>{l 2,3} givenby f (a) =1,
r\N=sld)=2, f(c) =f(8)=3, and
(b) f (e) =f, (h)=41is aIso a vertex coloring of G.
a b c g
f e d h

Figure 1: Agraph G
Definition 2. Let G =(V,E) be a simple graph. A surjective
vertex labeling f:v = {1,2,....,k} is called a k-coloring.

Definition 3. A vertex coloring f of a graph G =(V,E) is
proper if no two adjacent vertices are assigned the same col-
or.

Definition 4. A graph is k-colorable if it admits a proper ver-
tex k-coloring.

Definition 5. The chromatic humber of a graph G, denoted by
%(G), is the smallest k such that G is k-colorable.

a b
d c
Figure 2. Graph C4
Example 2. Consider graph G in Figure 1. Then
fz-v—>{1 23) given by fla)=f(d)=f(g)=1;
f(f b) f(h) 2 and f(e) ( :)=3 is a proper

vertex coloring of G. Moreover, the chromatic number of G is
2(G)=3.

Notation 1. A k-coloring f:V - {1,2,....k
pressed as a vertex partition f= {X],Xz,...,

} may also be ex-
Xk}, where

X =f71(i). The XT_'S are called color classes.
Definition 6. Let G =(V,E) be a graph and i € v. The neigh-

borhood of u is the set N(u) = {v:uv € E}. If X is a subset of
the vertex set V, then the neighborhood of X is the set

Nx) = U Mu)

u€X

Definition 7. Let G=(V,g) be a graph and
f= {X],Xz,...,xk} be a proper k-coloring of G. We say that f
is a b -coloring if N(Xr_) ﬂXj contains at least r-elements for
i #=j. If k is the largest number such that G admits a b -
coloring, then k is called the br—chromatic number of G, de-
noted by b (G).

Example é Consider the graph C, in Figure 2. Then
= {X X } with X ={a,c} and X =(b,d) is a proper
coloring of C4 Note that

N(X)NX,={b,d} N {b,d} = {b,d)

N(Xq)ﬂXl ={a,c}N{a,c}={a,c}.
Hence, i
|N Nx |—

|N ﬂx ‘ =
Thus, f3 is a bz-colormg It can be shown that k=2 is the
largest number such that C4 admits a bz-coloring. Therefore,

bz(C4) =2

a b c
S e d
Figure 3: The graph P2 ><P3

November-December


mailto:marygracebongabong@norsu.edu.ph

534 ISSN 1013-5316;CODEN: SINTE 8

Example 4. Consider graph PZXP3 in Figure 3. Then
.= {Xlsxz} with X ={a,c,e} and X, ={bdf} is a proper
coloring of PZXP3 . Note that

N(X ) NX,= (b,dif I N (b,df) = (b,dif)
N(Xz) r]X1 ={a,c,e}N{a,c,e} ={a,c,e)
Hence,
|N(XJﬂX2| =3
|N(X2)HX]‘ =3,

Thus, f, is a b3-co|oring. It can be shown that k=2 is the
largest number such that P XP, admits a b3—co|oring. There-
fore, zb}(P2 X P3) =2.

The b-chromatic number [1-20] of a graph represents the
maximum number of colors that can be used to properly color
its vertices. However, there’s an additional twist: each color
must have at least one representative vertex adjacent to a ver-
tex of every other color. In other words, we’re not just color-
ing the graph; we’re ensuring that each color class has a rep-
resentative that interacts with all other colors.

The study of the b-chromatic number in graph theory was
motivated by the desire to explore a more intricate coloring
concept beyond the standard chromatic number. Researchers
sought to understand how to color graphs while ensuring that
each color class has a representative vertex interacting with
vertices of all other colors. This additional condition adds
complexity and opens up new avenues for investigation, lead-
ing to intriguing results and applications in various fields.

In this research paper, the researcher introduced a variety of
b-chromatic number, called br-chromatic number. In addi-

tion, the researcher introduced a couple of new family of
graphs and study their corresponding br—chromatic numbers.

In particular, the researcher provide answers to the following
questions. What is the br—chromatic number of paths, worm

graph, cycles, and dream catcher graph,

This study holds significant implications for several critical
areas, including the biological networks (specifically prote-
in-protein interaction networks) [21], theoretical computer
science [22], and ad hoc and sensor networks [22].

Moreover, the findings of this research promise to deepen our
comprehension of b-chromatic number and its implications
biology and computer science. By bridging current
knowledge with future inquiries, this study stands to contrib-
ute to a more comprehensive understanding of this vital field.
The concept of the bl—chromatic number finds meaningful

analogy in sociology, particularly in the study of social net-
works, leadership, and intergroup relations. In a socio-
gram, individuals form a complex web of connections, and
community structures often exhibit overlapping boundaries.
A bl-chromatic coloring corresponds to the maximum num-

ber of social groups that can coexist such that each has at
least one bridge individual maintaining ties across all others.
This mirrors Granovetter’s [23] notion of the strength of
weak ties, wherein certain actors link disparate social circles,
fostering the diffusion of information and innovation.
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From the perspective of Bourdieu’s [24] theory of social cap-
ital, the dominant vertex in each color class can be interpret-
ed as an agent endowed with bridging capital—possessing
both in-group legitimacy and out-group connectivity. In or-
ganizational sociology, this structure resembles Mintzberg’s
[25] liaison roles, which sustain coordination among differ-
entiated units. Thus, a higher bl—chromatic number implies a

social configuration that sustains greater functional diversity
without fragmenting communication—a mathematical reflec-
tion of pluralism with integration.

Sociological Implications

e Social integration: High b]—chromatic structures

model plural societies where diverse groups coexist
with strong intergroup links.

e Leadership and brokerage: The dominant vertices
represent leaders or brokers connecting different
communities, vital for knowledge transfer and con-
flict mediation.

e  Cultural diffusion: In models of opinion dynamics,
b-coloring guarantees that every viewpoint has
cross-exposure through at least one active interme-
diary.

e Institutional design: The framework helps in visu-
alizing optimal network structures that balance spe-
cialization and cohesion within large organizations
or communities.

2. RESULTS AND DISCUSSION

2.1 Preliminary Results. Remark 1 presents a tight upper
bound for the br—chromatic number.

Remark 1. Let G be a graph of order n, and
f= {X],Xz,...,Xk} be a proper k-coloring of G. If fis a b -
coloring of G, then k £ z .

r
To see this, let G be a graph and f={X],X2,...,Xk} be a
proper k-coloring of G. If f is a b -coloring, then N(XI_) ﬂXj
contains at least r-elements for i Zj. If N(X,-) ﬂXj contains at

least r-elements for i # j, then each color class must contain
at least r vertices. If each color class must contain at least r
vertices, then G must have at least kr vertices, that is kr <n.

l
Thus, k< —.
r

Remark 2 presents a tight lower bound for the br—chromatic
number. Since every br-coloring is a proper coloring, the
following remark holds.

Remark 2. Let G be a graph of order n. Then »(G) < br(G).
2.2. br—Chromatic Number of Paths

Theorem 1. Let P be a path of order n. Then 4, J(p ) =2

2
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Proof. Let P, =(L’],v2,...,v") be a path of order n, and con-
sider the labeling f={X], Xz} with X = {vl,v?’,...,vn_]},
and X2={v2,v4,...,vn}. Note that N(Xl) =X, and
N(X)=X. Hence, N(X)ﬂX =X NX =X, and

2 1 1 2 2 2 2
N(Xo)ﬂX =X NX =X .

2 | 1 1 1

Thus,  [N(X,)NX | =X, nx|—|X| 5] and
|N Nx |—|X nx |—|X |— . This implies that f is

JcoIorlng Therefore, bH , 22. If n>4, then by

(P)=TS
i

abn
|

2

Remark 1, bl <2.7. Accordingly,

2

b[i J(Pn) =2.
Theorem 2. Let P, be a path of order 3k. Then bk(sz) =3,

Proof. Let szz("l"z’

Vo ) be a path of order 3k, and

consider  the  labeling /= {X X X} with
X ={v_:fEr(mod3)} for r=1,2,3. Note that N ) = UX

r i i= bi
for i=1,2,3. Hence, NX ﬂX X for i#j. Thus,

|N ﬂX|—| ,|—kforz 123andz¢J, implying that f

is a b ~coloring. It follows that & Y(P ) > 3. But by Remark 1

bk(P“) :1—16 = 3. Therefore, b (P k) =3,

2.3. br—Chromatic Number of Worm Graphs

Definition 5. Let P =(u1,u2, il ) be a path of order rk. A

worm graph WG:k={u1,u2,...,
obtained from the path P by adding edges u_, u

s+i s+j
i,j€1{1,2, =0,1,2,....k — 1 excluding u

is the graph of order rk
with

,r}fors u .
k+1 k+r

Example 7. The graph in Figure 3.1 is the worm graph WG4

vy w2 W3 wYa4 W5 Vg Uy Vg Vg Vg Vi1 Viz V13 Via V15 V16

Figure 4. The worm graph WG‘I‘fJ

Theorem 3. Let W;r be a worm graph of order kr. Then

bk( err) =r.

Proof. Let WG’ = {vl,v ""’Vrk} be a worm graph of order

2

kr, and consider the labeling f={XlX2,...,X,_} with
Xj={V'iEj(modr)} for j=0,1,2,....,r—1. Note that
N(X) (W’)\X Ux for j=0,1,2,...,r—1. Hence,
7 J i®j L
N(x)Nx (Ux)ﬂx =X for i#j. Thus,
(=] !
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|N ﬂX|—|X|—kforz¢J This implies that f is a b -
colorlng. It follows that bk( kr)z:. But by Remark 1

b r <E = r. Theref bW )=r

k(Wkr) < ——=r. Therefore, k( kr) =r.

2.4, br-Chromatic Number of Cycles

Theorem 4. Let C_ be a cycle of order 2k. Then b (C )
2k K\ 2k

Proof. Let C_ =
consider the

be a cycle of order rk, and
labeling f={X],X2,...,X’_} with
Xj={V'iEj(modr)} for j=0,1,2,...,r—1. Note that
N(X)= (C )\X Ux for j=0,1,2,,r—1.

Ioimj
N(x)Nx = le Nx =x for
i\

|N ﬂX|—|X|—kforz¢J This implies that f is a b -
coloring. It follows that bk(Crk)Ei. But by Remark 1

! 3V _guns
VirVarmeV oy

Hence,

P#]. Thus,

rk
bk(Crk) S=r Therefore, bk(crk) =
2.5. b -Chromatic Number of Dream Catcher Graphs

Definition 6. Let C = {Vl,vz,

A dream catcher graph DC:k is the graph of order rk obtained
from Crk by adding edges by adding edges # . # _ with

s+i s+j
i,j€1{1,2, =0,1,2,....k — 1 excluding u

s } be a cycle of order rk.

,r}fors u .
k+1 k+r

Example 8. The graph in Figure 5 is the dream catcher graph
DC3.
15

‘ ‘
AN, IA’A\ N

U1 v2 v3 U4 5 Ug v7 Ug Vg vYip Y11 Y12 Vi3 V14 V15

Figure 5. The dream catcher graph DC’;S
Theorem 5. Let DC be a dream catcher graph of order rk.
Then bk(DC:k) =r.

Proof. Let DC” = {v],v .,vrk} be a dream catcher graph of

21

order rk, and consider the labeling f={X],X2,...,Xr} with

X = {v‘ i=j(mod r)} for j=0,1,2,...,r—1. Note that

(x’)=v(pc' )\x l;Jxl for j=0,1,2,...r— 1. Hence,
t=j

( )ﬂx— UX Nx =x for i %], Thus,

|N ﬂX|—|X|—kforz¢J This implies that f is a b -

colormg. It follows that bk(DC’rk)_ . But by Remark 1

bk(DC;k) < rk—k =r. Therefore, bk(DCZk) =r.
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